
[Applying UML and Patterns – Summary of ch.1-5] [Adv. Software Eng.] By: Salha Alzahrani -University of Technology Malaysia - 2008

Chapter 1

Important learning goal
• A critical ability in OO development is to skillfully

assign responsibilities to software object.

Assign responsibilities to software object. Why?
• Strongly influences the robustness, maintainability

and reusability of software components.

• GRASP  emphasize principles of responsibility
assignment. Such as -> Information Expert and
Creator

Analysis  emphasizes an investigation of the problem and
requirements rather than a solution. It emphasizes the
question “what” rather than “how”. Analysis is abroad term.
In requirements analysis, it means an investigation of the
requirements. In object oriented analysis it means an
investigation of the domain objects.

Design  emphasizes a conceptual solution (in hardware or
software) that fulfills the requirements rather than its
implementation. It emphasizes the question “how” the
system will work. Ultimately, designs can be implemented,
and the implementation (hardware or software) expresses
complete and true realized design. e.g. a description of a
database schema and software object.

Analysis  Do the right things
Design Do the things right

OO a paradigm that uses objects and their interactions to
design a system.

OO Analysis  there is an emphasis in finding and
describing the objects or concepts in the problem domain.
e.g. Flight IS has concepts such as plane, flight and pilot.

OO Design  or simply object design  there is an
emphasis on defining software objects and how they
collaborate to fulfill the requirements. e.g. Plane software
object may have tailNo att. And getFlightHistory method.
During implementation or object oriented programming,
design objects are implemented, such as Plane class in Java.

OOA/D  Object oriented Analysis and Design  for
creation of well-designed, robust, maintainable software
using OO technologies and languages such as Java or C#.

OO Programming  A programming language that supports
the concepts of encapsulation, inheritance and
polymorphism.

Pattern a named description of a problem, solution, when
to apply the solution, and how to apply the solution in new
context.

Basic SW Process

UML  the Unified Modeling Language is a visual language
for specifying, constructing and documenting the artifacts of
systems.

[1] UML is just diagramming notation
[2] UML is not OOA/D or a method
[3] UML is de facto standard diagramming notation for

drawing or presenting pictures (primarily OO software)

Topics and Skills

UML notation

Requirements
analysis

Principles and
guidelines

Patterns

Iterative
development with
an agile Unified

Process

OOA/D

[Applying UML and Patterns – Summary of ch.1-5] [Adv. Software Eng.] By: Salha Alzahrani -University of Technology Malaysia - 2008

UML define various UML profiles that specialize subset of
the notation for common subject areas.

Model Driven Architecture (MDA)  underlying the UML
notation is the UML meta-model that describes the
semantics of the modeling elements.

3 ways to use UML

• Sketch

o Informal and incomplete diagrams

o Very quick, requires no fancy tools

o Preferred by Agile modelers

o Often good enough to explore difficult parts of

the problem or solution space, exploiting the
power of visual languages.

• Blueprint

o Detailed model drawn by tool

o Used either for reverse engineering to visualize

and better understanding existing code in UML
diagrams

o Or for code generation

• Executable programming language

o Prepare complete suite of models for system

o Compile models automatically into executable

code but normally seen or modified by
developers (Not ready for ‘primetime’)

o Eliminates costly coding activity

3 perspectives to apply UML

• Conceptual Perspective

o Diagrams are interpreted as describing things in

a situation of the real world or domain of
interest.

• Specification (SW) Perspective

o Diagrams, using the same notation as in the

conceptual perspective, describe sw
abstractions or components with specifications
and interfaces , but no commitment to a
particular implementation such as Java or C#.

• Implementation (SW) Perspective

o Diagrams describe sw implementations in a

particular technology such as Java.

The meaning of class in different perspectives

• Domain Concept or Conceptual Class  real-world
concept or thing. A conceptual or essential perspective.
The UP domain model contains conceptual classes.

• Software Class  a class representing a specification or
implementation perspective of a sw component,
regardless of the process or method. UML class
diagram contains sw classes.

• Implementation Class  a class implemented in a
specific OO language such as Java. UML class diagram
contains implementation classes.

Chapter 2

SW development process  describes an approach to
building, deploying and possibly maintaining software.

[Applying UML and Patterns – Summary of ch.1-5] [Adv. Software Eng.] By: Salha Alzahrani -University of Technology Malaysia - 2008

Iterative development  contrasted with a sequential or
“waterfall” lifecycle  involves early programming and
testing of a partial system in repeating cycles. It also
normally assumes development starts before all the
requirements are defined in detail; feedback is used to
clarify and improve the evolving specifications.

In this lifecycle UP approach, development is organized into
a series of short, fixed-length mini-projects called iterations.
The outcome of each iteration is a tested, integrated and
executable partial system. Each iteration include its own
requirements analysis, design, implementation and testing
activities.

Also called:
(1) Iterative and evolutionary development  because
feedback and adaptation evolve the specification and design
after each iteration.

(2) Iterative and incremental development  because of
successive enlargement and refinement of a system through
multiple iterations.

Key benefits of iterative process
1. Higher project success rate

[1] Better management of complexity
[2] Early mitigation of high risks (technical,

requirements, objectives, usability..etc)
[3] Easier adaptation to changing reqs.

2. Higher productivity & lower defect rate
3. Client visibility into project status.. early feedback,

user engagement and adaptation.
4. Early lessons learned applied to later iterations

How long an iteration be? Iteration Timeboxing..
Recommended length between 2 and 6 weeks. Small steps,
rapid feedback and adaptation are central ideas in iterative
development. Long iterations subvert the core motivation
for iterative development and increase risks.

Iterations should be timeboxed, or fixed in length. Partial
system must be integrated, tested and stabilized by the
scheduled date. Extending the date is illegal.

Waterfall Lifecycle  or sequential lifecycle process 
attempts to define in detail all or most of the requirements
before programming. And often, to create a thorough design
or set of models before programming.
It promoted big upfront speculative requirements and
design steps before programming. It emerges highest failure
rates due to belief or hearsay rather than statistically
significant evidence of the defined requirements, analysis
and designs.

Why is the waterfall so Failure-Prone?
This is strongly related to a key false assumption that the
specifications are predictable and stable, and can be
correctly defined at the start of the project with low change
rates.

However, sw development is on average a domain of high
change and instability  known as the domain of new
product development.

On the other hand, iterative and evolutionary methods
assume and embrace change and adaptation of partial and
evolving specifications, models and plans based on
feedback.

The need for feedback and adaptation
In complex, changing systems (such as most sw projects)
feedback and adaptation are key ingredients for success.

[1] Feedback from (i) early development, (ii) programmers
trying to read specifications and (iii) client demos  to
refine the requirements

[Applying UML and Patterns – Summary of ch.1-5] [Adv. Software Eng.] By: Salha Alzahrani -University of Technology Malaysia - 2008

[2] Feedback from (i) test and (ii) developers  to refine
the design or models

[3] Feedback from the (i) progress of the team tackling early
features to refine the schedule and estimates

[4] Feedback from the (i) client and (ii) marketplace to re-
prioritize the features to tackle in the next iteration

Risk-Driven & Client-Driven Iterative Planning  The UP
encourage a combination of them. So, the goal of the early
iterations are chosen to (1) identify and drive down the
highest risks, and (2) build visible features that the client
cares most about.

Architecture-centric iterative development  the early
iterations in risk-driven iterative development focus on
building, testing and stabilizing the core architecture.. Why?
Because not having a solid architecture is a common high
risk.

Agile (flexible, light) approach to the well-known Unified
Process(UP)  is used as the sample iterative development
process.

For analysis and design, agile UP validate their applicability
to others methods, Scrum, Feature Driven Development,
Lean Development, Crystal Method and so on.

Agile modeling  emphasizes UML as a sketch; this is a
common way to apply UML, often with a high return on the
investment of time. The purpose of modeling is primarily to
understand not to document.

It implies a number of practices and values including:

[1] Adopting and agile method does not mean avoiding any
modeling. Many agile methods such as feature-driven
development, DSDM and Scrum normally include
significant modeling sessions.

[2] The purpose of modeling is to support understanding
and communication, not documentation .

[3] Don’t model or apply UML to all or most of the sw
design. Defer simple or straightforward design problems
until programming. Solve them during programming and
testing.

[4] Use the simplest tool possible.

[5] Don’t model alone. Model in pairs (or triads) at the
whiteboard, in the awareness that the purpose of
modeling is to discover, understand and share that
understanding.

[6] Create models in parallel.

[7] Use “good enough” simple notation. Exact UML details
are not important.

[8] Know that all models are inaccurate and the final design
will be different.

Agile development  apply timeboxed iterative and
evolutionary development, employ adaptive planning,
promote incremental delivery, and include other values and
practices that encourage agility – rapid and flexible respond
to change.

Agile methods  no specific definition for specific practices.
However, short, timeboxed iterations with evolutionary
refinement of plans, requirements and designs is the best
practice the methods share. In addition, they promote
practices and principles that reflect an agile sensibility of
simplicity, lightness, communication, self-organizing teams
and more.

Agile manifesto 

Individuals and interactions over processes and tools
Working SW over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

Agile Principles 

[1] The highest priority is to satisfy the customer reqs.

[2] Welcome changing reqs even in late development.

[3] Deliver working sw frequently with a preference to the
shorter time scale.

[4] Business people and developers must work together
daily throughout the project.

[5] Build projects around motivated individuals.

[Applying UML and Patterns – Summary of ch.1-5] [Adv. Software Eng.] By: Salha Alzahrani -University of Technology Malaysia - 2008

[6] The most efficient and effective method of conveying
info. to and within a development team is face-2-face
conversation.

[7] Working sw is the primary measure of progress.

[8] Agile processes promote sustainable development.

[9] Sponsors, developers and users should be able to
maintain a constant pace indefinitely.

[10]Continuous attention to technical excellence and good
design enhance agility.

[11]Simplicity is essential.

[12]Best architectures, requirements and designs emerge
from self-organizing teams.

[13]At regular intervals, the team reflects on how to become
more effective, then tunes and adjusts its behaviour
accordingly.

UP  Unified Process  has emerged as a popular a
popular iterative sw development process for building OO
systems.
- is very flexible and open,
- encourages including skilful practices from other iterative
methods., - such as from Extreme Programming (XP) &
Scrum
- UP combines commonly accepted best practices, such as
iterative life cycle and risk driven development, into a
cohesive and well-documented process description.

RUP  Rational Unified Process a detailed refinement of
the UP that has been widely adopted.

Agile UP  The UP was not meant by its creators to be
heavy or un-agile. Rather, it was meant to be adopted and
applied in the spirit of adaptability and lightness.

Examples of how this applies:

[1] Prefer a small set of UP activities and artifacts and in
general keep it simple. Remember that all UP artifacts
are optional, and avoid creating them unless they add
value. Focus on early programming not early
documenting.

[2] Since the UP is iterative and evolutionary, requirements
and designs are not completed before implementation.

They adaptively emerge through a series of iterations
based on feedback.

[3] Apply UML with agile modeling practices.

[4] There isn’t a detailed plan for the entire project.
Detailed plan is done adaptively from iteration to
iteration.

Important UP practices 

[1] Tackle high-risk and high-value in early iterations.
[2] Continuously engage users for evaluation, feedback and

requirements.
[3] Build core architecture in early iterations.
[4] Verify quality by testing throughout.
[5] Focus on essential models using UML
[6] Manage reqs. with use cases
[7] Practice change request & configuration management.
UP phases 
 A UP project organizes the work and iterations across 4
major phases:
[1] Inception: approximate vision, business case, scope,

vague estimates.
[2] Elaboration: refined vision, iterative implementation of

the core architecture, resolution of high risks,
identification of most requirements and scope, more
realistic estimates.

[3] Construction: iterative implementation of the remaining
lower risk and easier elements and preparation for
deployment.

[4] Transition: beta tests, deployment

Notes:
 This is not the old “waterfall” or sequential lifecycle of

first defining all requirements, and then doing most or
all of the design.

 Inception is not a requirements phase; it is a feasibility
phase, where just enough investigation is done to
support a decision to continue or stop.

Iterations

Sample
UP Disciplines

Business Modeling

Requirements

Design

Implementation

Test

Deployment

Configuration & Change
Management

Project Management

Environment

Focus
of this
book

Note that
although an
iteration includes
work in most
disciplines, the
relative effort and
emphasis change
over time.

This example is
suggestive, not
literal.

A four-week iteration (for example).
A mini-project that includes work in most
disciplines, ending in a stable executable.

[Applying UML and Patterns – Summary of ch.1-5] [Adv. Software Eng.] By: Salha Alzahrani -University of Technology Malaysia - 2008

 Similarly, elaboration, is not the requirements or design
phase; it is a phase where the core architecture is
iteratively implemented, and high-risk issues are
mitigated.

Discipline a set of activities and related artifacts in one
subject area, such as the activities within requirements
analysis.

Artifact  in UP, is the general term for any work product:
code, web graphics, database schema, text docs, diagrams,
models, and so on.

UP disciplines UP describes work activities within
disciplines. Some UP disciplines include:

[1] Business Modeling: The Domain Model artifact to
visualize noteworthy concepts in the application
domain.

[2] Requirements: The Use-Case Model and Supplementary
Specification artifacts to capture functional and non-
functional requirements.

[3] Design: The Design Model artifact to design the software
objects.

More!

A. Implementation discipline in UP means programming
building the system not deploying it.

B. Environment discipline means establishing the tools and
customizing the process for the project. i.e. setting up
the tool and process environment.

Chapter 4

Inception  An initial step with the following types of
questions are explored:

[1] What is the vision and business case for this project?

[2] Feasible?

[3] Buy and/or Build?

[4] Rough unreliable range of cost?

[5] Should we proceed or stop?

The purpose of the inception phase is not to define all the
requirements, or to generate believable estimate or project
plan. Most of the requirements analysis occurs during the
elaboration phase.

Inception in 1 sentence:

Envision the product scope, vision and business case

The main problem solved in 1 statement:

Do the stakeholders have basic agreement on the vision of
the project, and is it worth investing in serious
investigation?

Inception Artifacts  a popular iterative sw development
process for building OO systems.

Artifact Comment
Vision and
Business Case

Describes the high-level goals and
constraints, the business case, and
provides an executive summary.

Use-Case Model Describes the functional requirements.
During inception, the names of most use
cases will be identified, and perhaps 10%
of the use cases will be analyzed in detail.

Supplementary
Specification

Describes other requirement, mostly
non-functional. During inception, it is
useful to have some idea of the key non-
functional requirement that have will
have a major impact on the architecture.

Glossary Key domain terminology, and data
dictionary.

Risk list & Risk
Management
Plan

Describes the risks (business, technical,
resource, schedules) and ideas for their
mitigation or response.

Prototypes and
proof-of-
concepts

To clarify the vision, and validate
technical ideas.

Iteration Plan Describes what to do in the first
elaboration iteration.

Phase Plan &
Software
Development

Low-precision guess for elaboration
phase duration and effort. Tools, people,
education, and other resources.

[Applying UML and Patterns – Summary of ch.1-5] [Adv. Software Eng.] By: Salha Alzahrani -University of Technology Malaysia - 2008

Plan
Development
Case

A description of the customized UP steps
and artifacts for this project. In the UP,
one always customizes it for the project.

Chapter 5

Requirements capabilities and conditions to which the
system, and more broadly the project, must conform.

The UP promotes a set of best practices and one of them is
manage reqs. This does not mean the waterfall attitude of
fully define and stabilize the requirements in the first stage
of the project before programming, but rather in UP best
practice is a systematic approach to finding, documenting,
organizing and tracking the changing reqs of a system.

Challenges!
1. Discover
2. Verify
3. Document
4. Prioritize
5. Business value
6. Technical difficulty
7. Revise/update/delete
8. Ensure they’re implemented correctly (traceability)

Deferred/rejected requirements  Just as important as
accepted reqs. We need to document why reqs.
deferred/rejected. Otherwise, you’ll revisit the same issues.
But It is likely to be neglected in many agile projects.

 Interesting stats on reqs gathered in waterfall
projects…

• 25% of reqs change during project
• 65% of reqs never/rarely used!.

Types/Categories of Requirements 

FURPS+
A. Functional (behaviour): ability to perform user’s task 

features, capabilities, & security
B. Non-functional (URPS+) /quality attributes/quality

requirements (anything else)
[1] Usability  Human factors, help,

documentation
[2] Reliability  Failure rate, recoverability
[3] Performance  Responsiveness (response

time), throughput, accuracy, availability, &
resource usage.

[4] Supportability  Maintainability,
configurability, customizability &
internationalization.

The “+” in FURPS indicates sub-factors such as:
[5] Implementation  Languages, tools, hardware
[6] Interface  Interfaces with 3rd party (external)

systems
[7] Operations  System management & its

operating environment
[8] Packaging  Physical form factor
[9] Legal  Licensing & regulatory.

Documenting Reqs 

How are reqs organized in UP artifacts?
• Functional reqs go in Use Case Model
• URPS+ usually go in Supplementary Specification
• Glossary may contain validation rules
• Vision may contain high-level reqs
• Business Rules

• Domain expertise incorporated in system
• Arguably most valuable company asset
• Usually cross application boundaries
• Should be in separate artifact

	Important learning goal
	Assign responsibilities to software object. Why?
	Key benefits of iterative process
	How long an iteration be? Iteration Timeboxing..
	Why is the waterfall so Failure-Prone?
	The need for feedback and adaptation
	Challenges!
	 Interesting stats on reqs gathered in waterfall projects…
	FURPS+
	How are reqs organized in UP artifacts?

